Abstract
During the last decade of medical practice, the issue of integrated treatment of ischemic heart and brain damage is actively discussed, therefore the attention of scientists is increasingly of interest in the creation of potentially new models of treatment in the acute period of illness. Many researchers today actively pursue various pharmacological modulations with a complex of pathogenetically validated effects of various isoforms that are involved in the development of stroke, myocardial infarction, diabetes mellitus, atherosclerosis, Alzheimer's disease, Parkinson's disease, tumor growth, inflammatory diseases, heart failure and hypertrophy of the myocardium. In recent years, progress in treatment tactics has been achieved in studies that affect oxidative stress, which leads to irreversible effects of damage to the gray and white matter of the brain, which entails swelling and massive cell death, and therefore justifies the use of antioxidant therapy. The concept of the use of antioxidants in the early stages of the disease demonstrates promising direction and requires further study in various pathological conditions, since the potential for treatment effectiveness is quite high. The use of antioxidant therapy aimed at preventing or reducing oxidative stress has become widely used in the field of prevention and treatment of acute and chronic conditions, where the use of drugs with a pliotropic effect is of strategic importance. To study the evaluation of the neuroprotective effect of ethyl methylhydroxypyridine succinate recently, cytological studies of the effect of glutamate stress on cerebellum cells have been performed and it has been shown that the drug affects the increase in neuronal survival (p <0.05), where the focus is on pharmacotherapy of the combination of neuroprotective treatment of cerebrovascular pathology.
References
2. Wen J., Watanabe K., Ma M., Yamaguchi K., Tachikawa H., Kodama M., et al. . (2006).Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats.Biol. Pharm. Bull.29, 713–718.
3.Bode A. M., Dong Z. (2007) The functional contrariety of JNK. Mol. Carcinog, no 46, pp. 591–598.
4. Johnson G. L., Nakamura K. (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. Biophys. Acta, no 1773, pp. 1341–1348.
5. Javadov S., Jang S., Agostini B. (2014) Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol. Ther, no 144, pp.202–225.
6. Ma Y., Sun S., Zhang J., Chen Z., Guo F., Du Y., et al. (2016) Phosphorylation of JNK increases in the cortex of rat subjected to diabetic cerebral ischemia. Neurochem. Res., no 41, pp. 787–794.
7. Carboni S., Boschert U., Gaillard P., et al. . (2008). AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br. J. Pharmacol., no 153, pp.157–163.
8. Murata Y., Fujiwara N., Seo J. H., Yan F., Liu X., Terasaki Y., et al. . (2012) Delayed inhibition of c-Jun N-terminal kinase worsens outcomes after focal cerebral ischemia. J. Neurosci., no 32, pp.8112–8115.
9. Schepetkin I. A., Kirpotina L. N., Khlebnikov A. I., et al. (2012) Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol. Pharmacol., no 81, pp. 832–845.
10. Li D., Li X., Wu J., Li J., Zhang L., Xiong T., et al. (2015) Involvement of the JNK/FOXO3a/Bim pathway in neuronal apoptosis after hypoxic-ischemic brain damage in neonatal rats. PLoS ONE. No 10, pp.0132-98.
11. Atochin D. N., Schepetkin I. A., Khlebnikov A. I., et al. (2016) A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci. Lett, no 618, pp. 45–49.
12. Diaz-Cañestro C., Merlini M., Bonetti N. R., et al. . (2018) Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int. J. Cardiol.,no 260, pp.148–155.
13. Liu Y., Huang Y., Xu Y., Qu P., Wang M. (2018) Memantine protects against ischemia/reperfusion-induced brain endothelial permeability. IUBMB Life., no 70, pp. 336–343.
14 Girn H. R., Ahilathirunayagam S., Mavor A. I., Homer-Vanniasinkam S. (2007). Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovascular Surg., no 41, pp. 277–293.
15. Monassier J. P. (2008). Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch. Cardiovasc. Dis., no 101, pp. 491–500.
16. Sharma V., Bell R. M., Yellon D. M. (2012). Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin. Pharmacother., no 13, pp. 1153–1175.
17. Messner F., Grahammer J., Hautz T., Brandacher G., Schneeberger S. (2016). Ischemia/reperfusion injury in vascularized tissue allotransplantation: tissue damage and clinical relevance. Curr. Opin. Organ Transplant., no 21, pp.503–509.
18. Nijboer C. H., van der Kooij M. A., van Bel F., Ohl F., Heijnen C. J., Kavelaars A. (2010) Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury. Brain Behav. Immun., no 24, pp. 812–821.
19. Javadov S., Jang S., Agostini B. (2014) Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol. Ther., no 144, pp. 202–225.
20. JJi F. T., Liang J. J., Miao L. P., Wu Q., Cao M. H. (2015) Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury. Mol. Med. Rep., no 12, pp. 2049–2055
21. Guo X. X., An S., Yang Y., Liu Y., Hao Q., Tang T., et al. (2018) Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol. Int., no 42, pp. 756–768.
22. Walshe C. M., Laffey J. G., Kevin L., O'Toole D. (2015). Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK-dependent mechanism. Intensive Care Med., no Exp.3, pp.1-10.
23. Vassalli G., Milano G., Moccetti T. (2012). Role of mitogen-activated protein kinases in myocardial ischemia-reperfusion injury during heart transplantation. J. Transplant.,no 2012, pp.928-954
24.Wu J., Li J., Zhang N., Zhang C. (2011). Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Res. Cardiol., no 106, pp.317–324.
25. Shang L., Ananthakrishnan R., Li Q., Quadri N., Abdillahi M., Zhu Z., et al. . (2010). RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3β signaling pathways. PLoS ONE., no 5, pp.100-92
26. Xu H., Yao Y., Su Z., Yang Y., et al. (2011).Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK.Am. J. Physiol. Heart Circ. Physiol., no 300, pp. 913–921.
27. Shvedova M. V., Anfinogenova Y., Schepetkin I. A., Atochin D. N. (2017).The role of JNK-kinases and their inhibitors in neuroprotection in ischemic brain injury. Russ. J. Physiol., no 103, pp.268–283.
28 Davis R. J. (2000). Signal transduction by the JNK group of MAP kinases, Cell., no 103, pp.239–252.
29. Dougherty C. J., Kubasiak L. A., Frazier D. P., et al. (2004) Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation.FASEB J., no 18, pp.1060–1070.
30.Li H. H., Du J., Fan Y. N., et al. (2011). The ubiquitin ligase MuRF1 protects against cardiac ischemia-reperfusion injury by its proteasome-dependent degradation of phospho-c-Jun. Am. J. Pathol., no 178, 1pp. 043–1058.
31. Koch P., Gehringer M., Laufer S. A. (2015). Inhibitors of c-Jun N-terminal kinases: an update.J. Med. Chem., no 58, pp.72–95.
32. Wen J., Watanabe K., Ma M., Yamaguchi K., Tachikawa H., Kodama M., et al. . (2006). Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol. Pharm. Bull., no 29, pp.713–718.
33. Zheng G. Y., Chen X. C., Du J., et al.(2006). Inhibitory action of propyl gallate on the activation of SAPK/JNK and p38MAPK induced by cerebral ischemia-reperfusion in rats. Acta Pharm., no Sin. 41, 5pp. 48–554.
34.Wen X. R., Li C., Zong Y. Y., Y et al. (2008). Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience, no 156, pp.483–497
35. Hu S. Q., Ye J. S., Zong Y, et al. . (2012). S-nitrosylation of mixed lineage kinase 3 contributes to its activation after cerebral ischemia. J. Biol. Chem., no 287, pp. 2364–2377
36. Liu H. T., Zhang H. F., Si R., et al. . (2007). Insulin protects isolated hearts from ischemia-reperfusion injury: cross-talk between PI3-K/Akt and JNKs.,Acta Physiol., no Sin.59, pp. 651–659.
37. Liu D. H., Yuan F. G., Hu S. Q., et al. (2013).Endogenous nitric oxide induces activation of apoptosis signal-regulating kinase 1 via S-nitrosylation in rat hippocampus during cerebral ischemia-reperfusion., Neuroscience, no 229, pp. 36–48.
38. Jang S., Javadov S. (2014). Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK., PLoS ONE., no 9, pp1135- 26.
39. Jin Q., Li R., Hu N., et al. (2017). DUSP1 alleviates cardiac ischemia-reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways., Redox Biol., no 14, pp. 576–587.
40 Erikson J. M., Valente A. J., Mummidi S., et al. (2017). Targeting TRAF3IP2 by genetic and interventional approaches inhibits ischemia/reperfusion-induced myocardial injury and adverse remodeling., J. Biol. Chem., no 292, pp. 2345–2358
41.Qureshi A. I., Mendelow A. D., Hanley D. F.(2009) Intracerebral haemorrhage. The Lancet, no 373(9675), pp. 1632–1644.
42. Meschia J. F., Bushnell C., Boden-Albala B., et al. (2014) Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association, American Stroke Association.Stroke, no 45(12), pp.3754–3832.
43.Gustavsson A., Svensson M., Jacobi F., et al. (2011) Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, no 21(10), pp.718–779.
44.Belur P. K., Chang J. J., He S., Emanuel B. A., Mack W. J. (2013) Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurgical Focus, no 34(5, article E9)
45.Aronowski J., Zhao X. (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke: A journal of cerebral circulation, no 42(6), pp.1781–1786.
46. Valko M., Morris H., Cronin M. T. D. (2005) Metals, toxicity and oxidative stress. Current Medicinal Chemistry, no 12(10), pp.1161–1208.
47. Zhao X., Aronowski J. (2013) Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH, Translational Stroke Research, no 4(1), pp. 71–75.
48.Yu Y.-P., Chi X.-L., Liu L.-J. (2014) A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury.The Scientific World Journal, no 2014(9)
49.Toda N., Ayajiki K., Okamura T. (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacological Reviews, no 61(1), pp. 62–97.
50. Eigel B. N., Gursahani H., Hadley R. W. (2004) ROS are required for rapid reactivation of Na+/Ca2+exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. American Journal of Physiology—Heart and Circulatory Physiology, no 286(3), pp.955–963.
51. Li Q., Pogwizd S. M., Prabhu S. D., Zhou L.(2014) Inhibiting Na+/K+ATPase can impair mitochondrial energetics and induce abnormal Ca cycling and automaticity in guinea pig cardiomyocytes.PLoS ONE, no;9(4)
52. Chrissobolis S., Miller A. A., Drummond G. R., Kemp-Harper B. K., Sobey C. G. (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Frontiers in Bioscience, no 16(5), pp.1733–1745.
53.Gu Y., Dee C. M., Shen J. (2011) Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability.Frontiers in Bioscience, no 3(4), pp.1216–1231.
54. Su X., Wang H., Kang D., et al. (2015) Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway.Neurochemical Research, no 40(4), pp. 643–650.
55. Laird M. D., Wakade C., Alleyne C. H., Jr., Dhandapani K. M. (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radical Biology & Medicine, no 45(8), pp. 1103–1114.
56. Jiang T., Harder B., Rojo de la Vega M., et al.(2015) P62 links autophagy and Nrf2 signaling. Free Radical Biology and Medicine B, no 88, pp.199–204.
57. Lee J.-Y., He Y., Sagher O., et al.(2009) Activated autophagy pathway in experimental subarachnoid hemorrhage.Brain Research, no 1287, pp. 126–135.
58. Hu S., Xi G., Jin H., He Y., et al.(2011) Thrombin-induced autophagy: a potential role in intracerebral hemorrhage. Brain Research, no 1424, pp. 60–66.
59. Wang Z., Shi X.-Y., Yin J., Zuo G., et al.(2012) Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. Journal of Molecular Neuroscience, no 46(1), pp. 192–202.
60. Liu Y., Li J., Wang Z., Yu Z., Chen G. (2014) Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to cystatin C: possible involvement of the autophagy pathway. Molecular Neurobiology, no 49(2),pp.1043–1054.
61. He Y., Wan S., Hua Y., Keep R. F., Xi G. (2008)Autophagy after experimental intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, no 28(5), pp. 897–905.
62. Filomeni G., De Zio D., Cecconi F. (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death and Differentiation, no 22(3), pp. 377–388.
63. Rubio N., Verrax J., Dewaele M., et al. (2014) P38MAPK-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling. Free Radical Biology and Medicine, no 67, pp.292–303.
64. Li L., Tan J., Miao Y., Lei P., Zhang Q. (2015) ROS and autophagy: interactions and molecular regulatory mechanisms.Cellular and Molecular Neurobiology, no 35(5), pp. 615–621.
65.Wang X., Wang W., Li L., et al.(2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta—Molecular Basis of Disease, no1842(8), pp.1240–1247.
66.Persson T., Popescu B. O., Cedazo-Minguez A. (2014) Oxidative stress in Alzheimer's disease: why did antioxidant therapy fail?Oxidative Medicine and Cellular Longevity, no 11.
67. Reynolds A., Laurie C., Lee Mosley R., Gendelman H. E. (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. International Review of Neurobiology, no 82, pp. 297–325.
68.Tsang A. H. K., Chung K. K. K. (2009) Oxidative and nitrosative stress in Parkinson's disease. Biochimica et Biophysica Acta, no 1792(7), pp. 643–650.
69. Henchcliffe C., Beal F. M. (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Clinical Practice Neurology, no 4(11), pp. 600–609.
70. McNaught K. S. P., Olanow C. W. (2003) Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson's disease.Annals of Neurology, no 3(supplement 3), pp.73–86.
71. Castellani R., Hirai K., Aliev G., et al. (2002) Role of mitochondrial dysfunction in Alzheimer's disease. Journal of Neuroscience Research, no 70(3), pp. 357–360.
72. Leuner K., Schulz K., Schütt T., et al. (2012) Peripheral mitochondrial dysfunction in Alzheimer's disease: focus on lymphocytes. Molecular Neurobiology, no 46(1), pp.194–204.
73. Choi J., Rees H. D., Weintraub S. T., et al. (2005) Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with alzheimer and Parkinson diseases.The Journal of Biological Chemistry, no 280(12), pp.11648–11655.
74. Wang J., Xiong S., Xie C., Markesbery W. R., Lovell M. A. (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. Journal of Neurochemistry, no 93(4), pp. 953–962.
75. Sultana R., Perluigi M., Butterfield D. A. (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radical Biology and Medicine, no 62, pp 157–169.
76. Andreazza A. C., Shoo L., Wang J.-F., Trevor Young L. (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Archives of General Psychiatry., no 67(4), pp. 360–368.
77. Gubert C., Stertz L., Pfaffenseller B., et al. (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. Journal of Psychiatric Research, no 47(10), pp.1396–1402.
78. Kim H. K., Andreazza A. C., Yeung P. Y., et al. (2014) Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. Journal of Psychiatry and Neuroscience, no 39(4), pp.276–285.
79. Soeiro-de-Souza M. G., Andreazza A. C., Carvalho A. F., et al. (2013) Number of manic episodes is associated with elevated DNA oxidation in bipolar i disorder. The International Journal of Neuropsychopharmacology., no 16(7), pp. 1505–1512.
80. Andreazza A. C., Wang J.-F., Salmasi F., et al.(2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. Journal of Neurochemistry, no 127(4), pp. 552–561.
81. Scola G., Kim H. K., Young L. T., Andreazza A. C. (2013) A fresh look at complex i in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biological Psychiatry, no 73(2), pp. 4–5.
82. Tobe E. H. (2013) Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatric Disease and Treatment., no 9, pp.567–573.
83. Maes M., Galecki P., Chang Y. S., Berk M. (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry, no 35(3), pp. 676–692.
84. Milaneschi Y., Cesari M., Simonsick E. M., et al. (2013) Lipid peroxidation and depressed mood in community-dwelling older men and women, PLoS ONE, no 8(6)
85. Nishioka N., Arnold S. E. (2004) Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. American Journal of Geriatric Psychiatry, no12(2), pp.167–175.
86. Klepac N., Relja M., Klepac R., et al. (2007) Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington's disease gene carriers and healthy subjects: a cross-sectional study. Journal of Neurology, no 254(12), pp. 1676–1683.
87. Sorolla M. A., Reverter-Branchat G., Tamarit J., et al. (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine, no 45(5), pp. 667–678.
88. Oliveira J. M. A.(2010) Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Journal of Neurochemistry, no 114(1), pp. 1–12.
89. Bowling A. C., Schulz J. B., Brown R. H., et al. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. Journal of Neurochemistry, no 61(6), pp. 2322–2325.
90. Pedersen W. A., Fu W., Keller J. N., et al. (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of Neurology., no 44(5), pp. 819–824.
91.Fraunberger E.A., Scola G.(2016) Redox Modulations, Antioxidants, and Neuropsychiatric Disorders. Oxid Med Cell Longev., no 2016:, pp. 4729-192.
92. Hannan P.A., Khan J.A., Ullah I., Ullah S. (2016) Synergistic combinatorial antihyperlipidemic study of selected natural antioxidants; modulatory effects on lipid profile and endogenous antioxidants. Lipids Health Dis., no 15(1), p. 151.
93. Мищенко Т.С., Дмитриева Е.В (2015) Мексиприм в лечении больных с дисциркуляторной энцефалопатией, обусловленной атеросклерозом и артериальной гипертензией. МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ .-5 (75).- С.1-6
94. Мищенко Т.С., Мищенко В.Н., Лапшина И.А. (2012) Использование препарата Мексиприм в лечении больных с дисциркуляторной энцефалопатией: данные исследования «Каскад».- Ліки України №3–4 (2).-С.11-14
95. Godunova A.R., Rakhimova A.A., Leontyeva O.I., et. Al (2018) An influence of submaximal (submineximal) doses of mexidol on oxidant stress and inflammation in the acute period of ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova, no118(2), pp. 27-30
96. Bolotova E.V., Lushpay N.Y., Kovrigina I.V. (2018) Improvement of the efficacy of treatment of hypertensive encephalohathy by using mexidol .Zh Nevrol Psikhiatr Im S S Korsakova, no 118(4)., pp. 61-64
97. М.Н. Долженко , Е.И. Попова , О.В. Шершнева и др. (2016) Опыт применения этилметилгидроксипиридина сукцината в лечении инфаркта миокарда: антиишемический, антидепрессантный, анксиолитический эффекты. СЕМЕЙНАЯ МЕДИЦИНА №4 (66), С. 64-71
98. Е.В. Костенко, Л.В. Петрова, К.А. Зайцев, и др. (2010) Опыт применения антиоксидантной терапии (Мексиприм) при лечении больных в раннем восстановительном периоде ишемического инсульта полушарной локализации//РМЖ.-ТОМ 18, № 22, 2010
99. Л.А. Дзяк, Е.С. Цуркаленко (2017) Оценка возможностей фармакологической коррекции оксидантного стресса как фактора риска развития сосудистых коморбидных заболеваний// THE JOURNAL OF NEUROSCIENCE of B.M. Mankovskyi’ 2017, ТОМ 5, № 2