Analysis of the connection of the concentration of iron in basal nuclei with cognitive impairments in patients with hypertension and atherosclerotic encephalopathy in the study of changes in the magnetic susceptibility of the subcortical structures
ARTICLE PDF (Українська)


hypertensive encephalopathy, atherosclerotic encephalopathy, dementia, cognitive impairment, hypointensity of subcortical nuclei, accumulation of iron in basal ganglia

How to Cite

Petrenko, M., & Grabovetskii, S. (2018). Analysis of the connection of the concentration of iron in basal nuclei with cognitive impairments in patients with hypertension and atherosclerotic encephalopathy in the study of changes in the magnetic susceptibility of the subcortical structures. East European Journal of Neurology, (3(15), 15-21.


Vascular diseases of the brain are an important medical and social problem that negatively affects the economy of the country and the life of society as a whole. Discirculatory encephalopathy refers to slowly progressing disorders of the cerebral circulation, in which development of an essential role is played by hypertension, atherosclerosis, diabetes mellitus and other diseases that affect the vessels of the brain. The purpose of the study was to identify a specific pattern of iron accumulation in the subcortical structures of the brain of hypertensive and atherosclerotic encephalopathy patients to improve the diagnostic criteria for the development of cognitive impairment. For the study, 20 patients in the main group with a diagnosis of hypertensive and atherosclerotic encephalopathy were selected, and the control group consisted of 20 patients, the results of which neuropsychiatric tests were within the normal range. According to the results of the study, the accumulation of iron in the basal ganglia is higher in patients with the main group compared with the control group. The exact mechanism for increasing the concentration of iron in the basal ganglia of the patients in the main group is not known, but this study confirms that deposition of subcutaneous iron may be used as a biomarker for early diagnosis of vascular dementia that develops against the background of hypertensive and atherosclerotic encephalopathy.The results of the study reliably established the existence of a negative correlation between hypointensity of subcortical nuclei and neuropsychological parameters in patients with the main group.
ARTICLE PDF (Українська)


Свиридова Н. К. Когнітивні та емоційноособистісні порушення у хворих на гіпертензивну енцефалопатію. Стан мозкового кровообігу при артеріальній гіпертензії (науковІй огляд та особисті спостереження) / Н. К. Свиридова // Міжнародний неврологічний журнал. 2016. Q 1. С. 123–130

Brundel M., de Bresser J., van Dillen J. J.,et. al. Cerebral microinfarcts: a systematic review of neuropathological studies // J. Cereb. Blood Flow Metab. 2012. Vol. 32. Р. 425–436

Chui H.C., Mack,W., Jackson J.E., et. al. Clinical criteria for the diagnosis of vascular dementia: multicenter study of comparability and interrater reliability // Arch.Neurol. 2000. Vol. 57. – P. 191–196.

Erkinjuntti, T. Cerebrovascular dementia // CNS Drugs. 1999. Vol. 12. P. 35–48.

Friedman A., Galazka–Friedman J., Koziorowski D. Iron as a cause of Parkinson disease: a myth or a well–established hypothesis? // Parkinsonism Relat Disord. 2009;. Vol.15(suppl 3): 212–14

Haacke EM, Ayaz M, Khan A, et al. Establishing abase line phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron contenting the brain // Journal of magnetic resonance imaging : JMRI. 2007. Vol. 26: 256–64.

Hachinski,V.,Iadecola,C.,Petersen,R. National Institute of Neurological Disorders and Stroke Canadian Stroke Network vascular cognitive impairment ammonization standards// Stroke. Vol. 37. P. 2220–2241.

Hagemeier J, Geurts JJ, Zivadinov R. Brain iron accumulation in aging and neurodegenerative disorders // Expert Rev Neurother. 2012;12:1467–80

.Hallgren B, Sourander P. The effect of age on the non–haemin iron in the human brain// J Neurochem. 1958. Vol. 3:41–51.

Hametner, S.,Wimmer, I.,Haider, L., Iron and neurodegeneration in the multiple sclerosis brain // Ann. Neurol. 2013. Vol. 4, 848–861.

Harder SL, Hopp KM, Ward H, et al. Mineralization of the deep gray matter with age: a retrospective review with susceptibility–weighted MR imaging // AJNR Am J Neuroradiol. 2008. – Vol.29:176–83

Joanna M Wardlaw, Eric E Smith, Geert J. Biessels Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration // Lancet Neurol. 2013. – Vol. 12: 822–38

Kim, H. J., Ye, B. S., Yoon, C. W., et al. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type // Eur. J. Neurol. 2013. – Vol. 21. P. 744–751

Kurt A. Jellinger. Pathology and pathogenesis of vascular cognitive impairment—a critical update // Front Aging Neurosci. 2013. Apr 10;5:17.

Lee, M. J., Seo, S. W., Na, D. Let al. Synergistic effects of ischemia and beta–amyloid burdenon cognitive decline inpatients with subcortical vascular mild cognitive impairment // JAMA Psychiatry. 2014. Vol. 71, 412–422.

Leonardo Pantoni. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges // Lancet Neurol. 2010. – Vol. Jul;9(7):689–701.

Li K, Reichmann H. Role of iron in neuro- degenerative diseases // J Neural Transm. 2016; 123:389–99.

Li W, Wu B, Batrachenko A, et al. Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan // Hum Brain Mapp.– 2013 Epub ahead of print.

Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Iron levels in the human in: A post–mortem study of anatomical region differences and age–related changes // J Trace Elem Med Biol. 2014; 28: 13–7.

Roberts, T.P., Mikulis, D. Neuro MR: principles // J. Magn. Reson. Imaging. 2003. Vol. 26. – P. 823–837

Román,G.C.,Tatemichi,T.K., Erkinjuntti,T., Vascular dementia: diagnostic criteria for research studies. Report of the NINDS–AIREN International Workshop // Neurology. 1993. – Vol. 43. 250–260.

Seo, S. W., Ahn, J., Yoon, U., et al. Cortical thinning in vascular mild cognitive impairment and vascular dementiaof subcortical type//J. Neuroimaging. 2010. Vol. 20. P. 37–45.

Smith E. E., Schneider J. A., Wardlaw J. M., Greenberg S. M. Cerebral microinfarcts: the invisible lesions // Lancet Neurol. 2012. – Vol. 11. P. 272–282

Sun Y, Ge X, Han X, Cao W. Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild Cognitive Impairment Using Quantitative Susceptibility Mapping:A Potential Biomarker.Front // Aging Neurosci. 2017. – Vol. 9:81.

Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R., and Zecca, L. The role of iron in brain ageing and neurodegenerative disorders // Lancet Neurol. 2014. Vol. 13. P. 1045–1060.

Werring, D.J.,. Cerebral microbleeds: clinical and pathophysiological significance // J. Neuro-imaging. 2006. Vol. 17. P. 193–203.

Werring, D.. Cerebral Microbleeds: Patho-physiology to Clinical Practice // Cambridge University Press (2007).

Yoon, C. W., Seo, S. W., Park, J. S., et al. Cerebellar atrophy in patients with subcortical–typevascular cognitive impairment // Cerebellum. 2013. – Vol. 12. P. 35–42.

Yoshitake, T., Kiyohara, Y., Kato, I., et al.Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study // Neurology.– 1995. Vol. 45. P. 1161–1168.

Zhu WZ, Zhong WD, Wang W, et al. Quantitative MR phase–correctedimaging to investigate increased brain iron deposition of patients with Alzheimer disease // Radiology. 2009. – Vol. 253: 497–504.